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1. SUMMARY

A roadmap for CFD code validation is developed. The elements
of the roadmap are consistent with air-breathing vehicle design
requirements and related to the important flow path components:
forebody, inlet, combustor, and nozzle. Building block and
benchmark validation experiments are identified along with their
test conditions and measurements. Based on an evaluation crite-
ria, recommendations for an initial CFD validation data base are
given and gaps identified where future experiments would
provide the needed validation data.

2. INTRODUCTION

Computational Fluid Dynamics (CFD) must play a major role in
the development of aerospace vehicles because ground test facili-
ties are not able to fully simulate flight conditions. A CFD code’s
accuracy must be determined by a validation process, however,
because of possible sources of error in the solutions. The process
of validation involves two aspects: numerical and experimental.
Numerical validation is necessary because CFD codes provide
approximate solutions to the governing equations; they use dis-
crete grids; they employ algorithms that contain numericai dissi-
pation; and they may have nonconvergence errors. Validation of a
code’s physical modeling and its application to complex flows
requires experiment to determine accuracy limits and range of
applicability. Consequently, the pace of CFD’s introduction and
the extent of its reliability depends on validation. !

The second aspect of validation depends on comparisons with
well-posed experiments. Since code applications are becoming
more complex, it no longer suffices to use data from surface or
integral quantities such as lift and drag to provide the validation.
Two types of experiments are essential to the determination of
CFD accuracy.? Building block experiments are necessary 1o
validate physical and chemical modeling. Special attention must
be given to measurements necessary to guide and validate the
modeling. Benchmark experiments are necessary to validate CFD
code prediction capabilities. Measurements illuminating the
ability to predict engineering quantities are required.

Shortcomings in CFD validation exist at all flight regimes, but
especially at hypersonic speeds. Gaps exist in the validation data
base at true flight enthalpy due to facility and instrumentation
limits. Nevertheless, there is a need to review the current data
base to determine whether or not it can provide a basis for initiat-
ing a CFD validation process. Furthermore, much can be gained
by assembling the data base and making CFD comparisons so that
the inevitable pitfalls can be avoided in planning new validation
activities.

The purpose of this paper is to propose a validation roadmap
consisting of a series of steps that can establish a code’s capabili-
ties and associated accuracy. A series of appropriate experiments
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will be identified and cataloged. Selected validation experiments
will be identified and cataloged according to the flow path for an
air-breathing vehicle, e.g.. forebody, inlet, combustor, and nozzle.
Some examples taken from the data base will be used to clarify
and demonstrate their utility and applicability.

3. VALIDATION ROADMAP

For the purposes of this paper, validation will be used to imply
an established correspondence between actual flows and those
produced by computation. The author, together with colleagues
from various NASA Research Centers, developed the following
five-step validation roadmap: (1) Define what critical perfor-
mance information is needed and establish the corresponding
code requirements; (2) Establish the appropriate governing
equations and the corresponding physical and/or chemistry
modeling requirements; (3) Identify or develop the appropriate
validation data (building block data to guide and validate model-
ing and benchmark data to validate complex flow computations);
(4) Perform computations for exact experimental conditions and
test their sensitivity to the numerical and modeling assumptions;
and (5) Document the code including its validation to the extent
necessary to provide users with knowledge of the code’s sensi-
tivity to internal numerical parameters, grid refinement effects,
the code’s accuracy, and range of capabilities.

4. REQUIREMENTS

CFD performance estimates to support the design of an air-
breathing vehicle can be accomplished with “nose to tail” com-
putations using a series of codes identified with the air flow
path, i.e., forebody, inlet. combustor, and nozzle codes. Follow-
ing the first two steps in the roadmap, vehicle component
performance, code, and modeling requirements are introduced.

4.1 Forebody

The design performance requirements are lift, drag, and heat
load. To predict these, a code is required to compute surface
pressures, skin friction, heat transfer rates, and provide inlet flow
profile conditions required to initiate the inlet component code.
Modeling requirements are subdivided into numerical and
physical categories. Numerically, it is essential to preserve mass.
momentum, and energy, to capture discontinuities such as shock
waves, and to compute or admit flows developed by blunt noses
or leading edges to capture any entropy layer development. Code
sensitivity to grid refinement, numerical dissipation, lack of
convergence, and any internal code parameters must be deter-
mined and specified. Physical and chemistry modeling is
required for transition, turbulence, shock interactions, entropy
layer swallowing, equilibrium, nonequilibrium air chemistry,
wall catholicity, and low density flow at high altitudes. Mach
number, Reynolds number, and forebody structural material will
determine the modeling needs for air chemistry.



4.2 Inlet

The design performance requirements are mass capture, kinetic
energy efficiency, pressure recovery, heat load, and spillage
drag. To predict these the code is required to compute wall pres-
sures, skin friction, heat transfer, mass tlow, and provide exit
profiles for the initial conditions of the combustor component
code. Numerical, physical, and chemical modeling requirements
are similar to those described previously for the forebody, but
the code must additionally model cowl shock interactions and
separation resulting from shock/boundary-layer interaction.

4.3 Combustor

Thrust, heat load, efficiency, pressure losses, and structural
loads are the performance requirements of concern in the design.
Codes are required to compute overall thrust, wall pressures,
skin friction, heat transfer, and provide the flow exit profiles
needed to initiate the nozzie component codes. Complex situa-
tions involving vortex and injector interactions with the main
flow must be modeled in these codes. Numerical and mathemat-
ical modeling requirements are essentially the same as those
listed previously, but it is essential that these codes handle finite
rate chemistry, including air-fuel reactions, and that they model
turbulence chemistry interactions.

4.4 Nozzle

Thrust, moments, and heat loads are the performance parameters
required for design. The codes are required to predict net thrust,
wall pressures, heat transfer, and skin friction. Physical and
chemical modeling requirements include turbulence, shock
interactions, shear layers, relaminarization, secondary flows, and
finite rate chemistry for the air-fuel products of combustion.

5. VALIDATION DATA BASE

The next roadmap step is to identify or develop an appropriate
data base. Candidate experiments for CFD validation were iden-
tified through literature searches and knowledge of recent vali-
dation activities within the U.S.A. They were divided into the
building block and benchmark categories referred to previously
and integrated into a matrix table. The tables were then used to
show the range and completeness of the data, to identify gaps.
and to select an initial validation data base.

A portion of the results are shown in tables 1-7 for each compo-
nent category. The experiments, listed across the top of the table
in numerical sequence according to reference number, were
checked against the physical and chemical modeling require-
ments and performance requirements for the building block and
benchmark experiments, respectively. (There is no significance
attached to the numbering order.) Brief notations of test condi-
tions and geometry are given. Measurements from the experi-
ments were then checked to determine their match with the
requirements.

Several important conclusions can be drawn from a study of the
tabular results. The number of benchmark experiments is sub-
stantially fewer than the number of building block experiments,
partly because component testing is often proprietary and not
generally accessible. While the range of Mach numbers extends
into the hypersonic regime, the enthalpy at which the experi-
ments were conducted is mostly not commensurate with flight
enthalpy and hence few “real gas” sets of data are available. The
number of combustor and nozzle experiments lags considerably
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compared to the other categories and no combustor benchmark
data are available to the general user. The types and variety of
measurements for any single experiment and from experiment to
experiment varies considerably, reflecting the fact that experi-
ments performed in former decades were not planned to satisfy
the needs of validation and that instrumentation and facilities,
even today, limit our ability to perform complete validation
experiments. Nevertheless, selected experiments from this data
base provide the basis for initiating a focused validation effort.

5.1 Selection Criteria

The criteria for selecting the building block experiments were as
follows: The data were required to be pertormed at conditions
matching hypersonic flight Mach numbers (M > 3) for single
flows associated with components of an air-breathing vehicle;
they had to provide enough useful data to test specific physical
or chemical modeling problems; they had to have boundary con-
ditions defined sufficiently to initiate CFD solutions; and they
had to have experimental errors identified and their specificity
was desired. To the extent possible with today’s status of
instrumentation and facility development, measurements of flow
field quantities and at least some measurement redundancy was
desirable.

The selection of the benchmark experiments was made using a
similar basis. Measurement details on flow modeling and
chemistry, desirable for the building block data base, were not
considered essential so long as the data reflected a measure of
the actual physics and chemistry. However, test cases were
sought that could test a code’s ability to predict performance
over a range of flow conditions. To the extent possible,
measurements of flow field quantities in critical regions of the
flow were desirable.

6. RECOMMENDED EXPERIMENTS

These are sketched in figs. 1-7 and listed by reference number.
Although the experimental data base has shortcomings and gaps,
it is assumed that code developers can use it collectively to
provide a much needed validation baseline. Adhering to it can
establish the physical and chemical modeling attributes of the
codes, establish credibility regarding performance prediction,
and establish important code-to-code comparisons for added
confidence. Furthermore, code developers and experimentalists
can use the information as a guide to improving and enhancing
current experiments or for proposing additional ones.

6.1 Forebody

Transition, turbulence, and air chemistry are the most critical
modeling issues. Selected building block experiments are given
in fig. 1.

Transition onset and extent, influence of pressure gradient and
bluntness, and influence of three-dimensional flow all must be
modeled. At present, transition modeling is ad hoc and founded
on experimental evidence influenced by uncertainties associated
with free stream flight or wind tunnel conditions. Nevertheless,
some experiments were selected in order to assess and compare
current transition modeling. Experiment 1 is a flight experiment
useful in assessing transition onset criteria for high Mach
number real gas conditions. The remaining group of wind tunnel
experiments are recommended for assessing the ability to model
trends with bluntness and the influence of 3-D effects with the



understanding that wind tunnel disturbances influence the actual
locations of transition, if not the trends. NASA Langley
Research Center’s development of disturbance-free, quiet wind
tunnels will provide much better validation data in the future.
Experiment 3 was one of the first quiet wind tunnel demon-
stration experiments.

The validation experiments for attached flows selected for
assessing turbulence modeling cover a range of Mach numbers,
are limited in wall cooling range to 0.2, and the majority do not
simulate flight enthalpies. (The latter may not present a major
impediment as the influence of turbulence-chemistry interaction
is not believed to be a first-order effect, except in combustor and
nozzle flows.) Validation studies to date show turbulence model-
ing for attached hypersonic flows is reasonably in hand (see,
e.g., ref. 60). Uncertainties remain in modeling the influence of
pressure gradients, however, and a data base is only available at
lower Mach numbers. One experiment on a conical configura-
tion is available for assessing modeling for forebodies at angle
of attack.

Air chemistry modeling is essential to numerical computations
of hypersonic flows. Implementation of equilibrium air chem-
istry in CFD codes is straightforward and has a sound basis.
Nonequilibrium air chemistry implementation in CFD codes is
less advanced, e.g., decisions regarding strong or weak coupling
of the species equations with the fluid dynamics equations and
the choice of rate constants. Therefore, the recommended exper-
iments involve conditions where nonequilibrium chemistry
modeling is needed. The sharp and blunt cone data from a
ballistic range test for laminar flow conditions in air provides a
unique set of experiments conducted for this purpose. Other
experiments in heated oxygen and nitrogen are also available.
The paucity of detailed experimental profile data apropos to val-
idation at flight enthalpies for both equilibrium and nonequilib-
rium flows suggests that code-to-code comparisons become an
integral part of the validation process. With this objective in
mind it is also recommended that code-to-code comparisons be
made for the aititude and velocity conditions specified in cases 1
and 2 of ref. 61 for testing nonequilibrium modeling and
case 2-b from ref. 62 for testing equilibrium modeling.

The recommended benchmark experiments are given in fig. 2.
Only two experiments are recommended and they provide data
on generic geometries at hypersonic Mach number and Reynolds
number conditions leading to both laminar and turbulent flow.
(The data from experiment no. 46 are currently restricted to U.S.
citizens with access to NASP information.) The test conditions
do not match flight enthalpies and corresponding air chemistry
reactions. These experiments, however, will serve to validate
3-D algorithms, incorporation of transition and turbulence
models in them, and performance predictions of aerodynamic
parameters.

6.2 Inlet

Transition, turbulence, and air chemistry are also important
modeling issues associated with developing inlet codes. In addi-
tion however, shock-wave/boundary-layer interaction modeling
is crucial. The building block experiments selected for the
validation data base are listed in fig. 3.
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In addition to those previously selected and discussed for transi-
tion, turbulence, and chemistry modeling for the forebody, the
remainder deal with the shock-wave/boundary-layer interaction
problem for laminar and turbulent flows. A comprehensive
search for turbulent shock interaction validation experiments
was conducted for NASA by Settles.53 Most of those experi-
ments were listed in the candidate data base shown previously
and a few are recommended herein. Additionally, recent turbu-
lent validation experiments performed at NASA Ames Research
Center have been selected. They provide data on flows with
compression ramps. impinging shocks, and swept and intersect-
ing shocks. All of the selected experiments were performed in
wind tunnels at enthalpies that do not match flight.

Inlet benchmark experiments selected for the validation data
base are shown in fig. 4. The Mach number range is limited and
flight enthalpy is not matched. Although more experiments have
been performed recently, they could not be recommended
because they were performed on proprietary geometries. Never-
theless, the experiments selected will serve to validate 3-D algo-
rithms, incorporation of turbulence modeling, and provide some
data 1o evaluate predictions of performance parameters.

6.3 Combustor

The critical modeling issues for supersonic combustors involve
various mixing processes of chemically reacting constituents.
The combustor building block experiments shown in fig. 5 can
be useful in assessing modeling of various mixing processes
with and without chemical reactions, although they are limited
in many instances by the variety and accuracy of their data.

Experiment 34 provides supersonic data for 3 nonreacting
ejector flows: jet-off, jet-on , and two streamwise-aligned jets-
on. Experiment 37 provides subsonic data for a reacting flow
case. Experiment 36 and the data correlation from ref, 39 pro-
vide data to assess turbulence modeling of single and two-stream
shear layers, and experiments 35, 38, and 40 provide shear layer
mixing data for hydrogen-air reacting flows.

No combustor component experiments were selected because of
their proprietary nature. There is still, nevertheless, a serious gap
in both the combustor building block and benchmark experi-
mental data base adequate for CFD validation.

6.4 Nozzle

The nozzle building block experiments selected for assessing
modeling issues are shown in fig. 6. Of the critical modeling
issues. turbulent boundary layer development and the expansion
of reacting hydrogen-air mixtures are addressed.

Some of the flat plate flows from the forebody recommendations
can be used to test implementation of turbulence models into
nozzle codes. In addition, experiment 41 provides data on a
turbulent boundary layer developing on a nozzle wall to a very
high Mach number in helium. The data can be used to assess
turbulence modeling for highly expanding nozzle flows.
Experiments in nozzles with reacting air chemistry are lacking.
Therefore a numerical test case developed recently and
described in ref. 45 is recommended for code-to-code
comparisons.



Only one nozzle benchmark experiment is recommended (see
fig. 7). This particular experiment was designed with CFD
Navier-Stokes codes under development at NASA Ames
Research Center and was recently completed. Although it is a
cold-air nozzle experiment, it can provide a basis for validation
of 3-D algorithms, turbulence modeling, and the ability of the
codes to predict some of the required performance parameters.
Experiments with reacting air chemistry are needed.

7. RECENT VALIDATION ACTIVITIES

Some of the selected validation experiments were designed and
carried out recently at the NASA Ames Research Center.
Building block experiments at hypersonic Mach numbers were
performed to guide and validate turbulence and real gas air
chemistry modeling. Benchmark experiments were performed to
validate 3-D forebody and nozzie codes. Each of the experiments
was designed with validation as their primary purpose and some
of the results are described next.

7.1 Physical and Chemical Modeling Experiments
Experiments designed to provide guidance and validation for the
development of compressible turbulence models for various
shock-wave/boundary-layer interactions have been accom-
plished in the Ames 3.5-Foot Hypersonic Wind Tunnel
(3.5 HWT). Four experimenis?!30-33 were completed, providing
surface measurements and mean-flow boundary layer profiles.
Turbulence measurements will be obtained in the future with a
laser anemometer and a laser-induced-fluorescence instrument
developed for the facility.

One of these experiments consisted of a series of axisymmetric
flares preceded by a cone-ogive-cylinder. The test geometry and
conditions are shown in fig. 8. Beginning and end of transition
occurred on the cone ahead of the cylinder. The measurements
in the interaction zones included surface pressure, heat transfer,
and surface oil streaks. A few mean flow velocity and density
profiles were also obtained ahead of the interaction zone and on
the 20° flare. The data are summarized and tabulated in ref. 21.

Experimental surface pressure and heat transfer distributions are
shown in fig. 9 for the 35° flare. The separation locations
determined from surface oil streaks are shown along with typical
data error bars. The data are being used to validate turbulence
model corrections for compressibility. They are compared with
computations by Horstman® using a standard k-e eddy viscosity
model and one corrected for compressibility. These solutions
were obtained by solving the Reynolds-averaged Navier-Stokes
equations. [TW refers to “integration to the wall” using low
Reynolds number damping terms. For the modified model,
which accounts for compressibility effects and limits the length
scale in the vicinity of reattachment, significant improvements
were obtained in predicting the measured pressure distribution,
the predicted separation location, and the heat transfer.

Other tests were performed to guide turbulence modeling for
impinging, swept, and intersecting swept shocks interacting with
a turbulent boundary layer. A model sketch is shown in fig. 10.
A sharp flat plate was used for these experiments. The plate was
pitched at —2° angle of attack to increase the test Reynolds num-
ber and provide a uniform 2-D flow field on the plate. The plate
was of a hollow frame construction, having interchangeable
panels with several 20-cm-diameter holes in the center that
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accommodated surface pressure, heat transfer, pitot-static, yaw,
and total temperature instrumentation ports. Tests were made
with a wedge mounted above the test bed to generate a shock
wave which impinged on the test bed. Pressure and heat transfer
were measured throughout the interactions. In addition, to
surface pressures and heat transfer, flow field surveys and skin
friction were measured. Wedges with angles of 5°, 10°, and 15°
were tested. In another configuration, fins were placed on the
flat plate to generate a glancing shock-wave interaction. Fin
angles of 5° to 15° were investigated. More recently a crossing
shock interaction experiment was completed. In addition to sur-
face pressure and heat transter, flow field surveys and skin fric-
tion were obtained. Documented data are provided for each of
these experiments,30-33

Typical data from the swept shock experiment are shown in
fig. 11. Measured pressure and heat transfer, normalized by the
upstream flat plate values, are plotted as a function of spanwise
distances. Error bars are shown at two locations to indicate the
variations in accuracy of the measurements. As the fin angle is
increased, the corresponding increase in its shock strength
causes the flow (o separate, as observed from converging surface
streamline patterns. Corresponding increases in heating and
pressure were observed between 5 and 10 cm. As the fin wall is
approached the pressures and heating continue to increase. On
the fin the flow is laminar above the interaction and near the
plate surface. Fin pressures (not shown) decrease rapidly at the
intersection with the plate indicating the presences of a corner
vortex.

Comparisons of the data on the plate with the 10° fin are com-
pared with computations by Horstman® in fig. 12. Pressure, heat
transfer, and skin friction data predicted with the Navier-Stokes
code computations using a k-e model are in good agreement
with the data. Although not shown here, comparisons of predic-
tions with flow field profile data were also in good agreement.
Evidently, for these flows, compressibility corrections needed
for the strong 2-D interactions where large streamwise separa-
tions occurs are not required. Modeling studies on this flow are
continuing, however.

Another building block experimemm has been carried out to
obtain aerodynamic data at true flight enthalpy on sharp and
blunt slender cones to assist in validating air chemistry model-
ing. It was carried out in the Ames Hypervelocity Ballistic
Range at speeds in excess of 5 km/s. Reynolds numbers were
between 10° and 106 and the flow was laminar. The resulting set
of data is suitable for testing air chemistry modeling. Aerody-
namic data for a 30% blunt 5° cone with conical ring shock
generators were obtained and a summary of the important results
taken from ref. 11 are shown in fig. 13. Aerodynamic data and a
typical shadowgraph are shown and compared with computa-
tions by Molvik using a Navier-Stokes code with a strongly
coupled 7-species air chemistry model and an ideal gas model. A
histogram is shown for the number of data points used to deduce
the aerodynamic coefficients. Contidence in the reported coeffi-
cients is greatest at moderate angles, where the number of data
points is greatest. The top data figure shows the experimental
and computed drag coefficient. The computed values of Cp
using both perfect gas and reai-gas chemistry models lie within
the experimental error bars as one would expect, since the drag
is mostly associated with the blunt nose. On the other hand, the



pitching moment is quite sensitive to the gas modeling because
the cone surface pressures resulting from the gas expansion are
affected by gas composition. The reacting gas model calcula-
tions provide a good prediction of the results. The shadowgraph
is compared with pressure contours, and the shocks from the
ring generators, which are also sensitive to gas composition,
compare nicely.

A finite fringe interferogram was obtained during one range
firing of a smooth blunted cone to provide validation informa-
tion on flow field density.%¢ However, obtaining density was
more difficult than first anticipated because of pitch and yaw
orientations of the model, the test density level, and because of
the index of refraction’s implicit dependence on density. Rather,
it is now proposed that optical path be computed from the
computations using real gas modeling and subsequently com-
pared with the measured optical path. In fig. 14 the infinite
fringe interferogram and interpreted optical path through the
model wake are shown. As can be seen, the optical path data
may provide an alternative, more sensitive means ot validating
the computations.

7.2 Generic All-Body Hypersonic Benchmark Experiment

A model of a generic hypersonic vehicle was tested in the
NASA Ames 3.5-Foot Hypersonic Wind Tunnel to establish a
benchmark experimental data base for validation of forebody
computer codes. Experimental data on flow visualization,
surface pressures, surface convective heat transfer, and pitot-
pressure flow-field surveys were obtained.*? A sketch of the
model showing the basic model geometry and dimensions is
given in fig. 15. The model has a delta planform with leading-
edge sweepback of 75° and total axial length, L, of 0.9144 m
(3 ft). The forebody is an elliptic cone with a major-to-minor
axis ratio of 4, and the afterbody has elliptical cross sections
with a sharp straight-line trailing edge. The juncture between the
forebody and afterbody occurs at 2/3 of the body length. The
mode! nose was sharp.

Examples of the data showing windward centerline surface-
pressure and heating distributions are given in figs. 16 and 17.
Also shown are predictions of the windward pressures and
heating from the Ames UPS code (an upwind parabolized
Navier-Stokes solver) with the Baldwin-Lomax turbulence
model. There is generally good agreement between the wind-
ward pressure and heating data and the predictions, with greater
differences at the higher angles of attack where the forebody
pressures and heating are underpredicted .

Experimental pitot-pressure profiles of the shock layer for the
afterbody centerline at x/L = 0.8 are compared with computa-
tions in fig. 18 for various angles of attack. The predictions are
considered in good agreement overall with experiment except
near the bow wave because of grid resolution. On the windward
side, the merging of the viscous and expansion regions of the
flow are also captured by the code.

7.3 Generic Single Expansion Ramp Nozzle Experiment

This experiment was conducted in the Ames 3.5 HWT at
Mach 7.3 and a Reynolds number of 150 million/ft. A photo-
graph of the model is shown in fig. 19. CFD was applied to
design the model. Pressures, 5-hole pitot probe surveys, and
ramp boundary layer profiles are available along with flow visu-
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alization. Navier-Stokes solutions are now being pertormed. An
example of the resuits showing a comparison of the measured
and computed shock system taken from ret. 67 is given in
fig. 20. Very good agreement is observed.

8. CONCLUDING REMARKS

A comprehensive data base for CFD code validation was
reviewed and experiments selected that provide a tocused basis
for evaluating code development. Two types of experiments
were selected for each major flow component: building block
experiments for simple flows that can verify physics and
chemistry modeling and benchmark experiments that can
validate forebody, inlet, combustor, and nozzle codes. Major
gaps 1n the data base exist for the real gas conditions associated
with flight, for reacting combustor flows, and tor reacting nozzie
flows.

In spite of thesc gaps, data to assess physical modeling for turbu-
lent boundary layers. shock interactions with laminar and trbu-
lent boundary layers, and combustor injector interactions are
available. Similarly, some data on chemistry modeling for
simple external aerodynamic flows and internal flows involving
mixing of hydrogen and air were identified that can provide
partial validation of the real gas aspects of the codes. Benchmark
experimental data, mostly at enthalpy conditions below those
associated with hypersonic flight, are also available for assessing
predictions of various 3-D algorithms and their associated
physical modeling assumptions.

While most of the recommended experiments provide the essen-
tial information for initiating computations, it would be prudent
to establish unified input conditions, data presentation format,
and error analysis for each of them. Precedents for such under-
takings have already been established (see, e.g., refs. 68-70). A
team of experts. knowledgeable in CFD and EFD, could
undertake the steps necessary to see that this is accomplished in
a timely fashion.
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Table 3 Combustor building block data base.

Table 4 Nozzle building block data base.
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Mach No. for Expenment 2 21 2 A 3 jo-6] 2.4 Mach No. (Eqvalent Flight Or Test) :20-47| 5-8 2.2 14
Flight MachNo. Simulated™™* 6¢c 6h 6¢ 7h | N/A 6h Mj 1~2.6| 1.7-3 F)

2-d _Geometry or Axisymmetinc v v v v v v Pi/Plree _stream To 500 1.4
13-4 Geometry v ! 2-d_Geometry or_Axisymmatric v v v v v
[Scale(in.) d=Duct Ht: L=Flow Length [0.750]0.75¢{0.75d| 4x8d | 3d | N/A |2x3.5d 3.d Geomelry

Physical And Ch | Modeling Req'mts Physical And Chemical Modeling Req'mts
Turbulence i v v | v Turbulence v
Shock Interactions td v v Shock Interaciions v
Shear Layers v v v v v v Shear Layers »; v
Vonex/Shock Interaction
linjector _interactions v v Soconda.ry Flows
iFinite_Rate Chsmistry v v v Separation

Measurements Relaminarization
Boundary Conditions v v v v Finite Rate Chemisiry v v
Wall Pressures v v v Measurements none
Heating Rates v Boundary Conditions v v v v
Skin_Friction Transition/Reiaminarization L ocation
Pitot Profiles v Thrust v
Temperature Profiles v v v v v Moments v
Statc Pressure Profiles v v v Wall Pressures v v v v
Velocity Profiles [4 v v [ v Heating Rates v
Species Profiles v v v v Skin Friction
Turbutence Quantities v v v v v v Pitot Profiles v v
Flow Visualization® LIF v LIF | PLIF Temperature Profiles v )
'o:.';;r(sl.‘::::'yllducod o width Static_Pressure Profiles v
=+ c=Cold Flow, Mc=1/3Mexp | h= Hot Flow Flight Enthalpy Simulated 1 ;:’::::sy :r:::‘ioss L4 :

Turbulence Quantriies v
Flow Visualization
Other(Specily) v Mach Disk| «

Table 5 Forebody benchmark data base.
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Table 6 Iniet benchmark data base.

Experiment(ret. no.} 48 49 50 51 52 53 54 55
Mach No. 35-4] 3 234§ 4 6 6 74 {11-18]
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Table 7 Nozzle benchmark data base.
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Fig. 12 Comparisons of measurements and
computations.
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Fig. 13 Comparisons of force and moment coefficients and shadowgraph from a ballistic range experiment with

computations.

Fig. 14 Finite fringe interferogram and interpreted optical
path from a ballistic range experiment.
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Fig. 15 Hypersonic All-Body model geometry and

dimensions.
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Fig. 17 Surface heat transfer on a hypersonic All-body
model.
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Fig. 18 Flow field pitot pressure profiles on a hypersonic
All-Body model.

Fig. 20 Comparisons of nozzle shock patterns from
experiment and a Navier-Stokes computation:
(a) shadowgraph; (b) computation.
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